探索任务成败的关键
今年7月,15套探测器被安设在圣海伦斯山,这是位于美国华盛顿州的一座火山。这些探测器携带的传感器可以监控圣海伦斯山内部状况,相互沟通实时分析数据,召唤“地球观测1号”卫星拍照。如果发现地球轨道有异常活动,卫星甚至可以命令这十多套探测器聚焦于某个点。自动探测器网络可以为太空探索提供大量优势,比如帮助探测任务覆盖更大的区域,即便其中一两台探测器受损或遭到破坏,也能保证任务不会间断。
这种方法还提高了数据处理能力,不同探测器携带的电脑可以协同作战,更为快速地处理数据。研究人员逐渐认为,一组组探测器的人工智能最终足以从事几乎科学家的所有工作,即便是在最遥远的太空。去年,在发表于《行星与空间科学》杂志的一篇论文上,一个由美国、意大利、日本三国科学家组成的研究小组提出了利用模糊逻辑(fuzzy logic)控制的自动探测器搜寻外星生命的新战略。所谓模糊逻辑是在20世纪60年代开发出来的一套算术工具,赋予电脑处理不确定事物的能力。
他们的计划涉及三种探测器的使用:具有传感器的地面漫游车,用以发现水和潜在热源的迹象,比如地热口;在头顶漂浮的飞艇,帮助确定研究的最佳地点;拍摄火星表面图像的轨道器,与任务控制中心配合,将数据传回地球。研究小组认为,模糊逻辑是比神经网络和其他人工智能技术更好的选择,因为这种方法善于处理不完整的数据或模棱两可的指令。
他们还表示,只要联合起来,上述三种探测手段的调查和推断能力同行星科学家不相上下。对火星任务的模拟实验似乎也证明了这一点:机器人在两次测试中均得出了与地球学家相同的结论。研究表明,这套系统从事对土卫六和土卫二的探测任务尤其有用,因为在距离地球如此遥远的星球,自主能力会成为任务成败的关键。
对目标进行“定点”探测
在喷气推进实验室,当天的机器人自动化实验即将结束。两个机器人正在依靠新软件改善相互之间的协调能力。实验的目标之一是分析两个机器人能否捕捉移动目标(这次实验是一个绰号“小个子”的遥控小卡车)的照片,通过延迟容忍网络(Delay-tolerant networking)将其传回“任务控制中心”。延迟容忍网络是用于数据传输的新系统。在未来实施的深空任务中,机器人会在更长距离行进中需要独立决策能力,因为地面发送的指令需要一个小时左右才能传给它们。
由于行星不停旋转,会有一段时间没有任何通讯。延迟容忍网络依赖于一种“储存和转送”方法,这种方法有望为行星探测器和任务控制中心之间的联系提供更为可靠的手段。网络中每一节点——无论是漫游车,还是轨道器——会不断传输信号,直至将信号安全地传输给下一个节点。信息以这种方式到达目的地可能会耗费更长的时间,但是,最终结局是好的,毕竟信息会抵达目的地。
这种办法看上去奏效了:两个机器人拍摄的照片均传送到“任务控制中心”,其中包括对“小个子”的广角镜头和高清晰近照。埃斯特琳对此欣喜万分。她说:“当我们大热天站在那里的时候,一只蝾螈快速地从岩石爬过。我禁不住想知道两个机器人是否能捕捉到这个镜头。此时,我想火星漫游车必须在尘卷风和逃之夭夭的两栖动物之间做出选择?史蒂夫向我保证,软件会指示漫游车根据两者的相对价值做出优先选择。我希望它选择蝾螈。哪怕外星生命有蝾螈一半害羞,我也希望漫游车可以快速行动起来,把外星生命的照片拍下来。”(孝文)
|