中新社合肥九月一日电 (记者 吴兰)记者从中国科学技术大学获悉,该校潘建伟教授及其同事苑震生、陈宇翱等,利用冷原子量子存储技术,在国际上首次实现了具有存储和读出功能的纠缠交换,建立了由三百米光纤连接的两个冷原子系综之间的量子纠缠。这种冷原子系综之间的量子纠缠可以被读出并转化为光子纠缠,以进行进一步的传输和量子操作。
据悉,该实验成果完美地实现了远距离量子通信中亟需的“量子中继器”,向未来广域量子通信网络的最终实现迈出了坚实的一步。近日,著名科学期刊《自然》杂志以“量子中继器实验实现”为题,发表了这项重要研究成果,并为此专门向有关科学新闻媒体发布了题为“量子推动 (Quantum Boost)”的新闻稿,称该工作“扫除了量子通信中的一大绊脚石”。
目前,高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,量子通信具有高效率和绝对安全等特点,因此成为国际上量子物理和信息科学的研究热点。然而,作为量子通信的基本资源,脆弱的纠缠光子极易被信道吸收,造成信号随通信距离指数衰减、误码率提高进而导致通信失败。因此,目前量子通信的距离被限制在一百公里的量级。类比于传统通信中为了补偿信号衰减而建立的中继器,奥地利科学家在理论上提出,可以通过量子存储技术与量子纠缠交换和纯化技术的结合来实现量子中继器,从而最终实现大规模的远距离量子通信。
据了解,潘建伟及其奥地利的同事分别在一九九八年和二00三年在实验上实现了纠缠交换和纠缠纯化,但是量子存储的实验实现却一直存在着很大的困难。为了解决这一问题,段路明教授及其奥地利、美国的合作者曾于二00一年提出了基于原子系综的另一类量子中继器方案,但由于这一类量子中继器方案存在着对于信道长度抖动过于敏感、误码率随距离增加而增长过快等严重问题,无法被用于实际的远距离量子通信中。
为了解决上述困难,潘建伟和他的同事陈增兵、赵博等,于二00七年提出了具有存储功能并且对信道长度抖动不敏感、误码率低的高效率量子中继器的理论方案。同时,潘建伟研究团队及其德国、奥地利同事经过多年的合作研究,最终在实验上实现了此类量子中继器。
|