- 政策解读
- 经济发展
- 社会发展
- 减贫救灾
- 法治中国
- 天下人物
- 发展报告
- 项目中心
|
采用先进的燃料和堆芯设计。采用最新的锆衬垫燃料设计,燃料棒沿轴向采用分区富集度布置,使轴向功率分布趋于均匀。
先进沸水堆核电厂模型图
采用内置式再循环泵。取消堆外再循环系统,简化了结构。采用湿式电机结构,电机的线圈浸在水中,不需要轴密封。
采用电力-水力组合的控制棒驱动机构。正常运行时用电力驱动控制棒,而紧急停堆时利用液压驱动使控制棒迅速插入,从而实现快速停堆和精细调节的功能。
采用三个独立的应急堆芯冷却和余热排出系统,每个系统负责堆芯一个区。每个区都有二个高压堆芯充水系统、一个堆芯隔离冷却系统、三个余热排出/低压堆芯充水系统。采用钢筋混凝土结构的安全壳,具有必要的强度,以承受压力,内部衬有钢衬里,保证安全壳的气密性。
ii)ESBWR经济简化型沸水堆。1992年美国通用电气公司开始设计自然循环的沸水堆,其特点系统采用非能动的安全系统,电功率670MWe,称简化型沸水堆(SBWR)。这一开发计划后来改变了,转向设计一个大功率、经济规模的,采用成熟技术和ABWR设备的ESBWR。ESBWR的设计基于自然循环和非能动安全特性,以提高核电厂的性能和简化设计。下图给出ESBWR的系统示意图,由于容器外区的水与围板以内的水汽混合物的密谋差,加上烟囱效应,构成主冷冷却剂的自然循环。经济简化型沸水堆核电厂系统图
③先进坎度(CANDU)型重水堆(ACR)核电厂。
ACR除继续保持CANDU型重水堆的水平压力管,不停堆装卸料,独立的低温、低压重水慢化回路等特点外,在设计上作了如下改进:i)采用低富集度(1.65%)的二氧化铀燃料组件,使燃耗增加三倍,乏燃料减少2/3;ii)采用轻水冷却剂回路,提高蒸汽的压力和温度,提高核电厂的热效率;iii)除了控制棒停堆系统外,还采用了在慢化剂中注入液态硝酸钆的第二停堆系统;iv)将轻水屏蔽水箱作为严重事故时的后备热阱;v)全堆芯具有负的冷却剂空穴系数;vi)安全壳采用钢衬里预应力混凝土结构。加拿大正在进行ACR-700与ACR-1000的开发,ACR-1000预期2014年投入运行。
下图给出ACR-1000的示意图。
ACR-1000示意图