高性能计算之源起——科学计算的应用现状及发展思考

发布时间:2019-07-12 10:17:55  |  来源:中国网·中国发展门户网  |  作者:金钟 陆忠华 李会元等  |  责任编辑:赵斌宇
关键词:科学计算,高性能计算机,高性能计算应用

材料科学之钛合金微观组织演化

现状

由于结构材料的复杂性和应用对性能的多方面需求,一种新材料从设计到应用往往需花费20年以上。以航空发动机用钛合金为例,对其强度、模量、韧性、疲劳、蠕变、氧化、腐蚀等方面性能均有很高要求,此外还需长寿命、高可靠、低成本。发达国家在航空航天材料方面有近百年的积累,而我国虽经几十年的研究,也有很多自己的合金牌号,但许多关键材料仍无法自给,其原因之一是基础研究不足。

21世纪以来,人们逐渐认识到计算模拟对新材料研发的促进作用,美国先后启动了“集成计算材料工程”(ICME)和“材料基因组计划”(MGI),希望借助计算加速新材料的研发,同时降低成本。我国2016年启动了材料基因工程计划,希望结合计算及实验,促进钛合金等多种关键材料的研发,以满足航空航天及燃气轮机等的需求。

对领域应用的促进

在新材料的研发与优化方面,多尺度模拟在合金化效应计算与合金元素筛选,微观原子变形机制的揭示,不同条件下的微观组织演化以及热加工工艺的优化等方面都起到重要作用,而这些都需要以高性能计算为基础。中国科学院金属研究所在国内率先集成多尺度模拟与实验研究,研发出应用600℃的高温钛合金Ti60和应用于人体的低模量钛合金Ti2448,并对TiAl合金叶片的应用等方面起到了重要推动作用,但仍无法满足航空、航天、航海、能源等对新材料的巨大需求。上述对性能的多方面需求,均需以材料的成分和组织为保证。尽管先进的测试手段不断涌现,但仍无法满足合金形变、相变机制及组织演化等的理解。例如,保载疲劳从20世纪70年代开始,一直制约着钛合金的高效应用。

中国科学院计算机网络信息中心张鉴团队与中国科学院金属研究所合作开展合金微结构演化相场模拟研究,研发了合金微组织演化大模拟并行软件ScETD-PF。它是基于可扩展紧致指数时间差分算法库的相场模拟软件,支持计算材料科学、计算物理学、计算生命科学等学科的计算模拟,实现了国际上最大规模的合金微结构粗化相场模拟,有助于加快我国新型合金的设计和加工工艺优化。团队应用ScETD-PF软件在“神威·太湖之光”超级计算机上运行合金微结构粗化过程相场模拟,规模较以往提高近百倍,实现了超过千万核的扩展性能,相场模拟实际性能达到峰值的40%,远高于普通软件约5%的水平。该软件入围了2016年“戈登·贝尔”奖候选名单。

发展趋势

国产计算系统的研发将改变我国过去以实验和仿制为主的新材料研发模式。通过计算模拟筛选合金成分,揭示形变、裂纹萌生的微观机理,探索不同微观组织的形成机制及其对性能的影响,为材料性能控制指明方向。甚至在材料制备之前即可模拟其在不同应用下的性能,从而大幅度减少实验次数及时间,显著提升创新能力。还可通过模拟,根据新部件设计对材料提出新要求,实现材料的按需设计,最终提升航空航天等系统的水平。

<  1  2  3  4  5  6  7  8  9  10  11  12  >  


返回顶部