|
|
电制热供暖
电制热供暖指利用电能,使用普通电锅炉、蓄热电锅炉、电锅炉+水蓄热、电锅炉+相变蓄热等集中供暖方式,以及发热电缆、电热膜、碳晶、热轨、碳纤维、直热式电暖器、蓄热式电暖器等分散供暖方式,还包括各类电驱动热泵等方式进行供暖。
截至 2017 年底,我国北方地区电制热供暖面积约 10.3 亿平方米。与燃煤供暖及燃气供暖相比,电制热供暖布置灵活,且用户端无污染物排放,适用于热力管网、天然气管网难以覆盖的农村地区。当前,空气源热泵、蓄热式电暖器等已成为“煤改电”清洁供暖政策推广的主流产品。然而,我国北方农村地区户均电网线路容量只有 2—3 千瓦,而普通型家用电制热储热供暖装置需达到 9—10 千瓦,大规模高压电制热储热供暖系统(图 4)则需达到几百千瓦甚至几兆瓦,这就涉及大规模的农村电网增容改造,以及房屋保暖改造等基础设施建设,导致电制热供暖成本较高。

地热供暖
地热供暖指利用地热资源,使用换热系统提取地热资源中的热量向用户供暖,可作为集中式或分散式供暖热源。按照埋存深度和温度等级,地热供暖可分为浅层地热资源、水热型地热资源和干热岩型地热资源。目前,浅层和水热型地热能供暖(制冷)技术已基本成熟——浅层地热能采用热泵技术提取热量,而水热型地热能通过人工钻井或天然通道开采利用;干热岩型地热能开发尚处于起步阶段,我国 2012 年才启动关于干热岩热能开发与综合利用技术的专项研究。地热与调峰锅炉联合供暖系统(图 5)是地热供暖的典型方式。
截至 2017 年底,我国水热型地热能供暖建筑面积已达 1.5 亿平方米。预计到 2020 年底,我国地热供暖(制冷)面积累计将达到 16 亿平方米,地热能供暖年利用量将达到 4 000 万吨标准煤。
生物质能清洁供暖
生物质能清洁供暖指利用生物质原料及其转化燃料在专用设备中清洁燃烧供暖的方式,包括:排放达标的生物质热电联产和大型生物质锅炉等集中供暖,以及中小型生物质锅炉等分散供暖。
我国生物质能清洁供暖技术发展还处在初期。截至 2018 年底,我国北方地区生物质能清洁供暖面积达 6.4 亿平方米。我国农作物秸秆及农产品加工剩余物、林业剩余物等生物质资源丰富,每年可供能源化利用约 4 亿吨标煤,因此发展生物质能供热具有较好的资源条件。但是,我国中小型燃煤供热锅炉数量较多,清洁取暖替代任务较重。这就使得生物质能供暖在终端消费环节直接替代燃煤有较大的发展空间,如:生物质固体成型燃料高效燃烧供暖、沼气燃烧供暖和村镇微型生物质热电联产供暖等。预计到 2020 年底,生物质热电联产装机容量超过 1 200 万千瓦,生物质成型燃料年利用量约 3 000 万吨,生物质燃气(生物天然气、生物质气化等)年利用量约 100 亿立方米,生物质能供暖合计折合供暖面积约 10 亿平方米。
太阳能供暖
太阳能供暖指利用太阳光热能,借助太阳能集热装置,配合其他稳定性好的清洁供暖方式向用户供暖。太阳能供暖可分为主动式和被动式。根据热媒不同,主动式太阳能供暖可分为太阳能空气供暖和太阳能热水供暖 2 种类型。太阳能空气供暖主要针对单层、闲置农房,其系统启动快、耐冻,但效率低。太阳能热水供暖是从太阳能生活热水基础上发展而来,其系统效率高、易安装,但控制不当易发生冻害、过热等问题。被动太阳房是被动式太阳能供暖的典型代表,20 世纪 80 年代初就已在北方地区广泛应用。
太阳能供暖具有使用寿命长、应用场景广泛等特点;在同等供热情况下,可节约 40%—60% 的能源成本。目前,集中式太阳能区域供暖是国际发展的趋势和方向。预计到 2021 年,我国太阳能供暖面积将达 5 000 万平方米。太阳能储热式多能互补供热系统(图 6)是太阳能供暖的典型代表之一。

工业余热供暖
工业余热供暖指回收工业生产过程中伴生的余热,经换热装置提质后进行供暖的方式。与燃煤供暖、天然气供暖、电制热供暖相比,工业余热供暖在技术及经济上均具有较好的可行性。但工业余热种类繁多,其数量和形态在时间或空间上也常具有不确定性,囿于传统余热回收技术水平,难以被高效利用。而储热技术的优势,恰恰能够缓解能量供需双方在时空、强度与地域上不匹配的矛盾。将储热技术与工业余热清洁供暖技术有机结合,可进一步提升余热转换效率。可移动式工业烟气余热储热供暖(图7)是该技术的典型代表之一。

截至 2016 年底,我国北方地区工业余热供暖面积约 1 亿平方米;预计到 2021 年,我国工业余热(不含电厂余热)供暖面积将达 2 亿平方米。