|
核能利用研究现状
高效发电
针对堆内运行温度在 700℃ 以上的第四代先进核能系统,现阶段较为成熟的热功转换系统主要包括蒸汽轮机系统(基于朗肯循环)以及闭式循环燃气轮机系统(基于闭式布雷顿循环)。根据工质的不同,闭式循环燃气轮机亦可分氦气轮机、氮气轮机、超临界二氧化碳轮机及混合工质轮机等,不同热工转换系统效率对比如图 2 所示。从图中可以看出,温度越高,热功转换系统效率越高,相比较传统蒸汽循环,高温条件下的热循环发电系统,能够更充分地利用 700℃ 以上核能系统的高品质热量,实现高效发电。
图 2 不同热功转换系统效率对比
蒸汽轮机系统技术发展已有百年以上,成熟度最高,但其系统较为庞大和复杂,在运行维护过程中需要不断补充循环水,因此在水资源匮乏的地区不宜采用。目前,火力发电常用的蒸汽轮机功率等级均在 300 MW 以上,多采用超临界及超超临界机组,温度范围 538℃—610℃,压力范围 24—32 Mpa,效率约41%—44%。700℃ 超临界是蒸汽轮机现阶段发展的瓶颈,因耐高温高压材料问题很难在短时间内突破且成本昂贵。
闭式循环燃气轮机系统特别适用于中高温热源,进而获得较高的热功转换效率,具有热源灵活、工质多样性的技术优势。相比蒸汽轮机,闭式循环燃气轮机功率密度大,因而尺寸小、投资少;并且由于可以少用水,在选址上具有很大灵活性。20 世纪中期,以空气为工质的闭式循环燃气轮机曾广泛应用于发电领域,技术成熟度较高。后随着高温核能概念的兴起,氦气轮机获得了极大的重视,并完成了非核领域的工业示范。针对出口温度为 700℃ 以上的第四代先进核能系统,常用工质闭式布雷顿循环燃气轮机性能比较如下:气体工质(氦气、氮气、空气或混合工质)闭式循环燃气轮机热效率可接近 40%,超临界二氧化碳工质效率可接近 50%。但从技术成熟度来看,超临界二氧化碳轮机目前还处于中试阶段,缺乏工业示范验证,而且其高温材料问题也是技术难点。