人工智能在21世纪水与环境领域应用的问题及对策

发布时间:2020-10-10 15:48:13  |  来源:中国网·中国发展门户网  |  作者:  |  责任编辑:孔令瑶
关键词:可持续发展目标,水安全,水环境,水系统,可持续管理,人工智能

水环境污染识别与风险响应

识别和响应水污染事件是高效防控水环境污染的重要前提,也是供水安全的基础保障。

水质指标建模与数据融合。AI 在水质指标模型化及多维时空数据融合等方面的应用实践,为提升水污染的研判能力和防控水平创造了新机遇(图 2)。例如,利用人工神经网络自适应选择方法,以水质遥感和检测数据为特征,可实现非线性水质指标模型的构建和应用,为水体水质管理与数字规划提供必要的基础数据。融合神经网络、支持向量机、分类回归树等 AI 算法,可以对更为复杂的水环境水质变化及其地球生物化学过程进行集成模拟,为水体水质保护与恢复提供重要的模型工具。

风险物质检测与毒性评估。将 AI 与光谱分析技术进行结合,是时下的研究热点。近红外光谱可用于快速检测生化需氧量等水体水质指标,而耦合以最小二乘支持向量机为代表的 AI 算法可以提升近红外光谱预测水质变化的准确性,为水污染的定量评估提供快捷方案;将反向传播神经网络和 k 均值聚类算法应用于激光诱导击穿光谱分析,为高效、准确和低成本估算重金属等传统检测时间长、检测费用高的地表水水质必要指标提供了新的思路和方法。与此同时,国内外也在探索将 AI 应用于环境毒理学研究,这为新型污染物的毒性预测与风险评估提供了经济、高效的新手段。

水质预警与污染应急方案构建随着原位监测传感技术和设备的快速发展,基于深度神经网络的 AI 技术在空间大数据分析中开始发挥重要的作用,这为优化水质监测布设方案、提高污染源解析能力、制定污染预警和应急防控体系等方面提供了有力的技术和决策支持。

水质安全保障技术研发

随着水处理标准的不断提升,新型水质净化功能材料的设计与应用、污染物去除机制解析与高效技术研发、污染物定向资源能源转化和调控成为水处理领域的研究热点。

新型水质净化功能材料的设计与应用。基于 AI 的材料基因组学技术得到了快速发展,为环境友好新型功能材料的设计和开发提供了高效途径。通过对材料开发过程的失败试验和历史数据进行反演学习,再结合目标污染物特征,对新材料的成分与特性进行计算模拟和优化,有望摒弃传统以试错为核心的材料研发范式,这将极大地促进水质净化新材料的产业化发展(图 3)。

污染物去除机制解析与高效技术研发。与健康密切相关的药物和个人护理品、内分泌干扰素、持久性有机物等微污染物在市政水处理系统中的迁移转化机理是发展高效水处理技术的关键和难点。随机森林、最小绝对值收敛和选择算子、前馈神经网络等 AI 算法的引入,非线性模拟与预测微污染物在水处理过程中的行为成为了可能,这为强化水处理技术提供了新方法。随着基于宏基因组学和代谢组学等分子方法的污水生物处理机理研究不断深入,如何从污水处理系统的微生物大数据中识别关键功能微生物,成为强化污水生物处理的核心难点。将 AI 技术与生物信息学结合,为水处理系统的信息挖掘和微观解析提供了重要机遇,为阐明污水生物处理机理开辟了新途径(图 4),但如何提高信息挖掘解析的准确性和可解释性仍是当前的主要难题。

污染物定向资源能源转化与调控。水污染控制的核心范式逐渐从污染物去除向资源化和能源化转变,而数字孪生等虚拟和增强现实的前沿 AI 技术将有望突破实时仿真同步调控水中污染物定向转移转化的技术难题,但仍有诸多关键技术难题有待突破。

<  1  2  3  4  5  >  


返回顶部