|
利用信道特征(如波导不变性、时反不变性等)处理增强不确实环境下的目标探测性能。例如,D’Spain 和 Kuperman研究的基于波导不变量、利用干涉结构的环境适配探测方法等,对环境参数具有较好的宽容性。时反处理也是一种适用于海洋环境不确定条件的信号处理方法,其利用基于声场的空间互易性和时反不变性,通过海洋环境本身来“自适应”地进行匹配处理,对模型失配问题具有较好的宽容性。
总之,水声环境适配处理是保证不确实海洋环境下目标探测性能稳定性的有效途径,也是今后水声目标探测技术的一个重要研究方向。
分布式目标探测技术
面对复杂海洋环境下低信噪比目标探测问题,基于现有的单平台、单基阵水声目标探测技术,难以满足当前需求。由于水声场是一种三维结构,使用在空间上分散布置的多个声基阵能够获取目标不同观测角度与传播路径的数据,有利于克服声场时空非均匀传播所导致的目标信噪比起伏问题,因此使用多平台、多基阵进行分布式探测是水声目标探测的一个发展趋势。分布式探测技术的发展主要包括 3 个方面。
基于信息融合的分布式探测技术。通过对分布式节点所获取的数据和信息进行关联与融合,是经典的分布式探测技术途径。但由于声音在水中传播慢,水声传播时延的影响在水声目标分布式探测过程中不可忽略,因此分布式水声信息融合探测有其特殊性,不同于陆上基于无线电传感器网络的信息融合探测方法。此类方法主要可分为目标级融合探测和特征级融合探测 2 种。其中,目标级融合探测以各分布式节点目标探测信息为基础,结合各节点的位置、概率统计模型等信息进行加权与关联分析,再按一定的优化融合规则(如最大似然、N-P 准则等)进行全局最优判决。特征级融合探测则是先提取各分布式节点数据中的相关特征与参数,再利用特征关联进行目标的联合探测。国内外研究还主要集中在目标级融合探测方面,特征级融合研究尚处在起步阶段。
基于物理基处理的分布式探测技术。在空间分布较远的多个声基阵可以增加在三维声场空间采样的差异性和多样性,以此为基础能够进行多节点之间的空间上和时间上的物理场匹配处理,分布式匹配场是其中最典型的一类方法。其根据海洋环境信息和声场预报模型,对感兴趣的目标(目标簇)的空间分布范围进行扫描,计算不同空间分布的各声基阵节点处预报的目标声场信号特征矢量,与相应的测量场信号特征矢量进行相关匹配处理,再按照一定的规则如最小二乘、最大似然比等计算全局相关匹配模糊度平面,最后进行目标的探测与定位。由于分布式物理基匹配处理技术能够在更大的空间尺度上进行“全场”匹配处理,理论上可以获得更高的空间和时间处理增益以及更高的三维定位分辨力,因此是未来最有潜力的分布式探测技术。
多基地主动目标探测技术。分布式探测系统工作在主动模式下即是多基地。多基地概念最初来自雷达领域,引入到水声领域已有数十年时间,但在应用上很难与雷达领域相比,究其原因主要是水声传播速度慢、时延不可忽略、信道时空起伏严重,基于概率统计与忽略时延的多基地雷达探测与估计理论很难适用。因此,相关研究主要集中在利用简单声学模型(主要基于声呐方程)、结合经典统计理论与数据关联融合方法优化系统配置、探测与定位性能方面,其中探测方法与基于目标级关联融合的被动探测方法类似,未考虑主动观测周期、传播时延等的影响,其性能还是依赖于单基地探测能力,很难利用多基地特性获取额外增益。未来应关注多基地联合探测技术,利用多基地目标与信道特性,获取联合探测增益,提高弱目标探测能力。另外,目前多基地主要是“一发多收”模式,水声信道的频率选择性在一定程度上会影响主动目标探测的稳健性,而近年来兴起的“多发多收”技术,为解决这类问题提供了一个较为有效的技术途径。“多发多收”技术,一方面通过不同发射节点上的波形设计和发射控制,可以减少信道选择性衰落和目标散射强度起伏对探测性能的影响,提升探测稳健性;另一方面通过能量发射分散、接收集中,可以在保证目标探测范围的同时,减少被截获的概率。
因此,随着目标探测设备由单平台集中处理向多平台协同处理方向发展,分布式目标探测技术由于融合了信号处理、分布式计算、通信网络等交叉领域技术,已经成为水声目标探测领域内日益关注的一个研究方向。