多架望远镜协同“作战”
位于美国加州的CARMA望远镜阵列,由6具10.4米直径,9具6.1米直径,8具3.5米直径的天线组成
位于夏威夷的JCMT望远镜
位于智利的ALMA阵列
发现第一个昏暗的污点将只是一个开始。杜勒曼希望使用更短同时更为“锋利”的0.87毫米波长。与此同时,越来越多的望远镜也将联合起来,帮助研究人员进一步揭开这颗黑洞的神秘面纱。
地球“微波眼”的中心将位于智利的山脉沙漠地区,在这里,阿塔卡马大型毫米/次毫米望远镜阵列(以下简称ALMA)正在制造之中。据悉,所有66个碟形卫星天线将于2012年竣工并投入使用。杜勒曼说:“重达800磅的ALMA将成为‘微波眼’的新主力成员。”通过与地球上的其它望远镜相配合,ALMA能够提供一幅更为清晰的Sag A图片,同时也可能发现M87星系内一个更为庞大的黑洞。
形象地说,ALMA也能为我们拍摄一部黑洞电影。杜勒曼说:“最令我感到兴奋的是,我们能够将目光聚焦时间变异性。”在很多波长条件下进行的观测揭示了盘旋在Sag A周围的气体产生的辐射突然爆发。利用甚长基线干涉测量法,杜勒曼希望对这些盘旋的并且实时被穹界吞噬的小闪光进行观测。他说:“这可能是这部影片的最珍贵的镜头’。”
旋转成关注焦点
这种观测能够揭示研究人员急于想知道的一个有关黑洞的问题,即它们的旋转。相对论指出,一个旋转的黑洞将在太空结构中形成一个漩涡,这种现象被称之为“引力框架拖曳”。距离黑洞较近的热点将被拖进这个漩涡,这些热点的移动将暴露Sag A的旋转速度。此外,我们也可因此了解这颗黑洞的过去,原因在于:它的旋转依靠其吞噬的使之成为当前“重量级”黑洞的物质。
牛津密西西比大学的伊曼纽尔·伯蒂(Emanuele Berti)以及安娜堡密歇根州大学的马尔塔·沃伦特里(Marta Volonteri)对黑洞一些不同“食物”产生的影响进行了计算。Sag A在成长过程中可能遵循一个稳定的“饮食”结构,即吞噬星系气体。星系气体共享星系的所有旋转,在逐渐靠近黑洞过程中形成一个螺旋运动速度越来越快的盘,就像水从放水孔流出一样。在星系气体完全被吞噬时,它的旋转便成为黑洞的一部分。如果Sag A的绝大多数重力都以这种方式增长,它的旋转可以提升到相对论可能允许的最大值。
此外,Sag A也可能通过吞噬任意轨道附近大量资源的气体逐渐成长壮大。这些“食物”随机定向的旋转在很大程度上彼此抵消,也就是说,Sag A的旋转速度可能很低。另一种可能性是,Sag A分层次成长,就像体积较小的星系合并形成银河系一样。每一个星系带来自己的大质量黑洞,所有这些黑洞合并在一起,最终形成Sag A。在伯蒂和沃伦特里的模拟中我们看到,经常只需适度的旋转便可形成一个黑洞。
广义相对论面临挑战
当然了,所有这些均建立在假设爱因斯坦广义相对论成立基础之上。在爱因斯坦提出这一理论几乎过了一个世纪之后,广义相对论仍旧是我们有关重力的最理想理论,并且与行星轨道以及引力透镜效应的精确观测结果相匹配。布罗德里克说:“广义相对论的完美程度几乎达到令人为难的程度。”
但科学家从未在黑洞附近的超强引力条件下验证这一理论,此时的广义相对论预言面临最为极端的一种情况。布罗德里克希望通过跟踪热点在扭曲空间的移动,对广义相对论进行修订。他说:“最理想的方式就是让一名大学生手持激光指示器进入星系中心。如果这些闪光真的出现,我们便可用它们替代。”
通过确定Sag A附近时空准确形态,这部有关闪光的电影便可将相对性和一些相竞争理论——用于解释恒星与星系的不规则运动更多地与暗物质和暗能量有关——区分开来。与相对性相竞争的理论包含一些复杂的想法,例如标量-张量-矢量引力以及f(R)引力。
杜勒曼4月进行的最新观测能否发现一些奇怪的事情?穹界是否拥有一个奇怪的形状?又或者一无所获。布罗德里克说:“在此之后,我们便要面临一个问题。”一种可能性是,在超强引力情况下,相对论是完全错误的。另一种可能性是,银河系中心的“怪物”Sag A要比我们认为的更为昏暗。(孝文 新浪科技)
|